

Published on Web 03/10/2007

Tetrasubstituted Pyrrolidines via a Tandem Aza-Payne/Hydroamination Reaction

Jennifer M. Schomaker, Andrea R. Geiser, Rui Huang, and Babak Borhan*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

Received November 18, 2006; E-mail: babak@chemistry.msu.edu

Hydroamination reactions of alkenes and alkynes have received considerable attention in the recent literature.¹ While the hydroamination of alkynes is facile compared to that of the corresponding alkenes, many alkyne hydroamination protocols require the use of metal catalysts or rigorously anhydrous or anaerobic conditions. Functional group tolerance often poses a particular problem in expanding hydroamination protocols to the preparation of synthetically useful building blocks. Hydroamination methods that do not involve the use of transition metals are not as well developed, but strong bases or bases containing electropositive metals have been reported to give alkyne hydroamination, especially when the nucleophilic nitrogen is in the form of an amide or sulfonamide.^{1d,e,2} However, the use of highly functionalized precursors has traditionally been avoided, as the strongly basic conditions can often lead to unwanted side reactions.

We report a mild tandem aza-Payne/hydroamination reaction of aziridinols mediated by dimethylsulfoxonium methylide that yields highly functionalized pyrrolidine ring systems in one pot at room temperature (Scheme 1). The resulting strained enamide products are potentially useful synthons for the rapid construction of densely substituted pyrrolidines and pyrrolidinones for use in natural product synthesis.³

The aziridinol substrates were synthesized from the corresponding aziridine aldehydes according to a previous report describing a chelation-controlled addition of Grignard reagents to Boc-protected aziridine aldehydes.⁴ Addition of Grignard or organolithium reagents to a series of N-tosylated aziridine aldehydes gave the desired alcohols in good yields. The presence of an R group syn to the carbonyl eroded the diastereoselectivity (1a and 1o, Table 1), while the use of a trans disubstituted aziridine aldehyde gave only moderate dr (1b and 1c). However, the use of 2,2,3-trisubstituted aziridine aldehydes gave the syn-aziridinols as the sole detectable product (Table 1, 1d-1m). Also of note was the excellent diastereoselectivity obtained in the generation of quaternary hydroxyl centers from aziridine ketones (1j and 1k). The presumed chelationcontrolled process with tosyl-protected aziridines is in doubt with the excellent dr's obtained with the 2,2,3-trisubstituted aziridines; this is the subject of ongoing studies (addition of excess TMEDA as a chelating agent had no effect on the dr of the reaction). The syn relationship between the aziridine and the alcohol was verified by X-ray crystallography of 2d and 2h (see Supporting Information).

The high diastereoselectivity obtained in the addition of Grignard reagents to the aziridine aldehydes was crucial to the success of the hydroamination. As shown in Scheme 2, only the *syn* diastereomer underwent hydroamination, as the aza-Payne rearrangement⁵ orients the anionic nitrogen and the alkyne on the same side of the epoxide. The *anti* diastereomer undergoes the aza-Payne rearrangement, but cannot cyclize to the pyrrolidine.

The hydroamination reaction was initially performed by treating the epoxy amine **4d** with 8.0 equiv of dimethylsulfoxonium methylide and heating the reaction to 80 °C overnight. The product Scheme 1

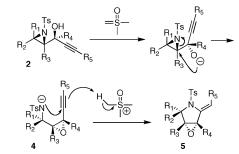


Table 1. Preparation of Aziridinol Substrates^a

		R ₅ MgBr		R ₁ N N N N R ₄		R ₁ N ^{Ts} OH R ₂ R ₄	
R_2	Υ R_4 R_3		\rightarrow R ₂	2 R3	₩_ _{R5}	¹¹² R	I ₃ R ₅
1a-o				2a-o ; syn		3a-o; anti	
	R,	$R_{_2}$	$R_{_3}$	R₄	R _s	yield	2:3
а	CH₃	CH₂OBn	Н	Н	Н	56%	1:1
b	Н	C ₇ H ₁₅	Н	Н	Н	67%	2.8:1
С	Н	CH₂OBn	н	Н	Н	71%	2:1
d	Н	CH₂OBn	$CH_{\scriptscriptstyle 3}$	н	Н	96%	>97:3
е	Н	Ph	$CH_{_3}$	Н	Н	90%	>97:3
f	Н	<i>p</i> MeOPh	$CH_{_{3}}$	Н	Н	67%	>97:3
g	Н	$\left \right\rangle$	×4.	н	Н	93%	>97:3
h	Н	CH₂OBn	CH^{3}	Н	CH^{3}	92%	>97:3
i	Н	CH₂OBn	CH^{3}	н	Ph	91%	>97:3
j	Н	CH₂OBn	$CH_{_3}$	CH₃	Н	89%	>97:3
k	Н	CH₂OBn	CH_{3}	CH_3	Ph	84%	>97:3
1	н	CH₂OBn	CH_3	н	TMS	90%	>97:3
m	n H	CH₂OBn	CH^{3}	н	TIPS	98%	>97:3
n	н	CH₂OBn	$CH_{_3}$	$C_{2}H$	н	80%	
0	<i>n</i> Bu	$CH_{_3}$	$CH_{_3}$	Н	Н	73%	1.2:1

 a A 0.028 M solution of the aldehyde in dichloromethane was cooled to -78 °C and treated with 5 equiv of the Grignard reagent. b Lithium acetylide was used to prepare the alcohol.

pyrrolidine **5d** (Table 2) was obtained in 99% yield. However, we found dimethylsulfoxonium methylide to be an effective base for the aza-Payne rearrangement, and thus, a one-pot conversion of aziridinols to tetrasubstituted pyrrolidines was developed (Table 2).⁶ The substrates were treated with an excess of ylide (2–4 equiv) and stirred at rt to yield the desired pyrrolidines in moderate to good yields. For **2a** and **2c**, the desired *syn*-aziridinol substrate could not be cleanly separated from the *anti* byproduct. Thus, prior treatment of **2a** and **2c** with NaH in THF gave mixtures of the epoxy amines, which were separated by column chromatography, and the desired diastereomer was subjected to hydroamination conditions. Alternatively, the hydroamination could be run on the mixture of *syn/anti* compounds, and the epoxy amine (resulting

Scheme 2

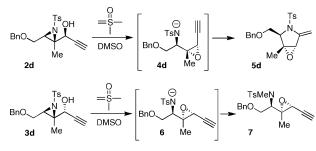
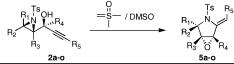
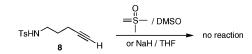



Table 2. One-Pot Conversion of Aziridinols to Pyrrolidines^a


SM	R,	R_{2}	$R_{\mathfrak{s}}$	R₄	$R_{\mathfrak{s}}$	pdt	yield
2a	CH ₃	CH ₂ OBn	Н	Н	Н	5a	72% [⊳]
2b	Н	C,H15	н	Н	Н	5b	82%
2c	Н	CH ₂ OBn	н	н	Н	5c	73% ^b
2d	н	CH ₂ OBn	CH^3	н	Н	5d	76%
2e	Н	Ph	CH^{3}	н	Н	5e	71%
2f	Н	<i>p</i> MeOPh	CH^{3}	Н	Н	5f	71%
2g	Н	$\left \begin{array}{c} \tilde{\mathbf{x}} \\ \mathbf{y} \\ y$	20	Н	н	5g	65%
2h	Н	CH ₂ OBn	CH^{3}	н	CH_3	5h	0% ^b
2i	Н	CH ₂ OBn	$\mathrm{CH}_{\scriptscriptstyle 3}$	Н	Ph	5i	63% <i>Z:E</i> 14.5:1
2j	н	CH₂OBn	CH_3	CH_3	Н	5j	64%
2k	Н	CH ₂ OBn	$CH_{\scriptscriptstyle 3}$	$\operatorname{CH}_{\scriptscriptstyle 3}$	Ph	5k	69% <i>Z:E</i> 14:1
21	Н	CH ₂ OBn	CH^{3}	Н	TMS	5d	68%
2m	Н	CH ₂ OBn	CH^{3}	Н	TIPS	5m	0%
2n	н	CH ₂ OBn	CH_3	$C_{2}H$	Н	5n	28%
20	<i>n</i> Bu	CH³	CH^{3}	Н	Н	50	57%

^{*a*} The aziridinols (0.1 M in DMSO) were treated with 4.0 equiv of dimethylsulfoxonium methylide (prepared from Me₃SOI and NaH in DMSO) and stirred at rt. ^{*b*} Yield starting from the epoxy amine.

from reaction of the *anti* diastereomer) was separated from the desired pyrrolidine (20). The remaining substrates (2b, 2d-2n) contained only the *syn*-aziridinol, and the majority underwent hydroamination smoothly. The exceptions were alkynes substituted with alkyl or silyl groups (Table 2, 2h, 2l, and 2m). It may be necessary for terminally substituted alkynes to contain a group capable of stabilizing a developing negative charge on the carbon adjacent to the newly forming C–N bond. The TMS-substituted alkyne 2l did deliver the desilylated product 5d, presumably as a result of initial deprotection of the TMS group. The Z-stereochemistry of the enamides obtained from aryl-substituted alkynes (2i and 2k) may result from prior coordination of the sulfoxonium to the opposite face of the alkyne, thus leading to rapid proton transfer and the observed stereochemistry.

The hydroamination reaction can be run catalytically in ylide, but the aza-Payne rearrangement requires an excess (2-4 equiv)of ylide to proceed with good conversion. A 64% yield of **5d** was obtained from the epoxy amine **4d** using 0.2 equiv of ylide. Further studies are ongoing to find conditions that allow the aza-Payne rearrangement to proceed using only a catalytic amount of base.

We suspected this facile hydroamination was aided by the preorientation of the nitrogen and the alkyne on the same side of the Scheme 3

epoxide by the aza-Payne rearrangement (Scheme 2). An unfunctionalized amino alkyne (8) was subjected to hydroamination conditions (Scheme 3), but no pyrrolidine product was obtained under several different conditions, implying a decrease in activation entropy of the cyclization is the underlying reason for the favorable hydroamination reaction.⁷

In conclusion, we have demonstrated a mild, base-mediated tandem aza-Payne/hydroamination reaction that yields a highly functionalized pyrrolidine ring system in the form of a strained enamide. Further studies are underway to expand the scope and mechanism of this hydroamination. Elaboration of the products into useful synthons for natural product synthesis is also currently under examination.

Acknowledgment. Generous support was provided for J.M.S. by a Michigan State University Distinguished Fellowship and a Division of Organic Chemistry Graduate Fellowship sponsored by Eli Lilly. We thank Professors Mitch Smith and Ned Jackson for illuminating discussions.

Supporting Information Available: Experimental procedures and spectral information is available for compounds **1a–o**, **2a–o**, and **5a–o**, as well as coordinates for the X-ray crystal structures of **2d** and **2h**. This material is available free of charge via the Internet at http:// pubs.acs.org.

References

- For selected examples, see: (a) Takemiya, A.; Hartwig, J. J. Am. Chem. Soc. 2006, 128, 6042-6043. (b) Anderson, L. L.; Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 14542-14543. (c) Michael, F. E.; Cochran, B. M. J. Am. Chem. Soc. 2006, 128, 4246-4247. For selected recent reviews, see: (d) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104-114. (e) Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795-813. (f) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673-686. (g) Odom, A. L. Dalton Trans. 2005, 2, 225-233. (h) Hazari, N.; Mountford, P. Acc. Chem. Res. 2005, 38, 839-849. (i) Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (j) Li, Y.; Marks, T. J. Organometallics 1996, 15, 3770-3772.
- (2) For selected examples, see: (a) Tzalis, D.; Koradin, C.; Knochel, P. *Tetrahedron Lett.* **1999**, 40, 6193–6195. (b) Kruse, C. W.; Kleinschmidt, R. F. J. Am. Chem. Soc. **1961**, 83, 216–220 and references therein. (c) Koseki, Y.; Kusano, S.; Ichi, D.; Yoshida, K; Nagasaka, T. *Tetrahedron* **2000**, 56, 8855–8865.
- (3) For selected examples of natural products with given skeleton see: (a) Wang, L.-W.; Su, H.-J.; Yang, S.-Z.; Won, S.-J.; Lin, C.-N. J. Nat. Prod. 2004, 67, 1182–1185. (b) Lam, Y. K. T.; Hensens, O. D.; Ransom, R.; Giacobbe, R. A.; Polishook, J.; Zink, D. Tetrahedron 1996, 52, 1481–1486. (c) Humphrey, A. J.; O'Hagan, D. Nat. Prod. Rep. 2001, 18, 494–502.
- (4) Righi, G.; Piertrantonio, S.; Bonini, C. Tetrahedron 2001, 57, 10039– 10046.
- (5) For selected examples, see: (a) Ibuka, T.; Nakai, K.; Habashita, H.; Hotta, Y.; Otaka, A.; Tamamura, H.; Fujii, N.; Mimura, N.; Miwa, Y.; Taga, T.; Chounan, Y.; Yamamoto, Y. J. Org. Chem. **1995**, 60, 2044–2058. (b) Ibuka, T.; Nakai, K.; Akaji, M.; Tamamura, H.; Fujii, N. Tetrahedron **1996**, 52, 11739–11752. (c) Ibuka, T. Chem. Soc. Rev. **1998**, 27, 145–154.
- (6) The use of other bases, such as NaH in THF or DMSO, or Grignards was unsuccessful in yielding the pyrrolidine products, and instead delivered the aza-Payne rearranged epoxy amines. Presumably, the protonated ylide (ylide used as the base) functions as a proton source during the hydroamination of the alkyne.
- (7) (a) Winnik, M. A. Chem. Rev. 1981, 81, 491–525. (b) Page, M. I.; Jencks, W. P. Proc. Nat. Acad. Sci. U.S.A. 1971, 68, 1678–1683.

JA068077W